ECN菌的益生机制:ECN对肠道菌群、肠上皮屏障和肿瘤的作用
大量体外实验证明ECN具有抗菌作用(图1)。ECN可调节IBD[25]引起的肠道菌群紊乱。IBD常伴有肠道菌群紊乱,包括链霉菌(Streptomyces)减少和变形杆菌(Proteus bacteria)增加[1,2]。ECN通过F1绒毛和H1鞭毛附着在肠上皮细胞(IECs)上。同时,局部持续分泌抗生素Journal Pre-proof 5(如细菌素MccM和MccH47)拮抗沙门氏菌[3]。此外,ECN能够产生六种铁载体(即儿茶酚肠霉素及螯合物、肟酸异辛催产素、混合铁载体Y ersenin、ChuA蛋白和EfeU蛋白)与其他细菌竞争铁元素。ECN还能抑制致病菌(如肠出血性大肠杆菌)的定植和毒素(如产志贺毒素大肠杆菌)的产生,从而维持肠道菌群的稳定[4,5]。
ECN表达的菌毛和鞭毛直接刺激肠上皮细胞(IECs)产生人β-防御素[6],人β-防御素可直接杀灭细菌,调节免疫[7]。IBD患者黏膜屏障中β-防御素水平常异常[8]。ECN在一定程度上避免了粘膜细菌附着和侵入引起的炎症。此外,已有研究证明ECN通过影响组织中miRNA的表达来调节炎症。在2,4-二硝基苯磺酸钠肠炎小鼠中,ECN可降低肠道组织中miRNA-155和miRNA-223的表达,且这两个指标与促炎因子IL-1β和TNFα呈正相关。同时,ECN上调miRNA-143,具有抑制先天免疫的作用。ECN可以通过下调基质金属蛋白酶-2和TNF-α的表达来恢复miRNA-143和miRNA-150的表达[9]。
此外,IBD患者肠上皮屏障被破坏,原因是IECs内紧密连接(tight junction, TJ)受损,IECs间渗透性增加,病原体或物质容易进入体循环。小鼠实验研究表明,ECN可促进IECs中TJ蛋白Zonula occludens-1的表达[27,28]。此外研究表明,ECN通过上调TLR-4的表达,抑制RHOA/ROCK2/MLC信号通路的激活(激活该通路会引起TJ蛋白分布的改变和屏障功能的破坏),从而修复肠上皮屏障的破坏[10,11]。
图1.ECN对肠道菌群、肠上皮屏障在IBD方面的作用(图源:Chen H,etal.,Mater Today Bio. 2023)
全身给药后,ECN在动物模型中定植厌氧肿瘤组织,使其成为治疗肿瘤的一种有前途的益生菌。ECN在自身免疫环境中不破坏或诱导自体外周T细胞耐受[12]。实验表明,ECN静脉注射后可在小鼠骨肉瘤细胞(约109CFU/g肿瘤组织)内定植,定殖时间长达8d。体外实验表明,ECN和热灭活的ECN均可通过PI3K/PTEN/AKT信号通路诱导结肠癌HT-29人结肠癌细胞凋亡,从而通过上调PTEN和bcl2相关蛋白(Bax),下调AKT而导致结肠癌细胞发生凋亡。另一项研究表明,ECN上清液可有效降低Caco-2癌细胞的活力,并显著降低caspase3/7的活性,以减轻5-氟尿嘧啶(5-Fu)化疗药物对IEC-6细胞的损伤[13]。
ECN抑制癌症的确切机制尚不清楚,还需要进一步的研究。
参考文献:
[1] W. Niu, F. Yang, Z. Fu, Y. Dong, Z. Zhang, J. Ju, The role of enteric dysbacteriosis and modulation of gut microbiota in the treatment of inflammatory bowel disease, Microbial Pathogenesis. 165 (2022) 105381.
[2] H. Takaishi, T. Matsuki, A. Nakazawa, T. Takada, S. Kado, T. Asahara, N. Kamada, A. Sakuraba, T. Yajima, H. Higuchi, N. Inoue, H. Ogata, Y. Iwao, K. Nomoto, R. Tanaka, T. Hibi, Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease, International Journal of Medical Microbiology. 298 (2008) 463–472.
[3] P. Schierack, S. Kleta, K. Tedin, J.T. Babila, S. Oswald, T.A. Oelschlaeger, R. Hiemann, S. Paetzold, L.H. Wieler, E. coli、 Nissle 1917 Affects Salmonella Adhesion to Porcine Intestinal Epithelial Cells, PLoS ONE. 6 (2011) e14712.
[4] R. Maltby, M.P. Leatham-Jensen, T. Gibson, P.S.
Cohen, T. Conway, Nutritional Basis for Colonization Resistance by Human
Commensal Escherichia coli Strains HS and Nissle 1917 against E. coli O157:H7
in the Mouse Intestine, PLoS ONE. 8 (2013) e53957.
[5] R. Reissbrodt, W.P. Hammes, F. dal Bello, R.
Prager, A. Fruth, K. Hantke, A. Rakin, M. Starcic-Erjavec, P.H. Williams,
Inhibition of growth of Shiga toxin-producing Escherichia coli by nonpathogenic
Escherichia coli, FEMS Microbiology Letters. 290(2009)62–69.
[6] S.N. Ukena, A. Singh, U. Dringenberg, R.
Engelhardt, U. Seidler, W. Hansen, A. Bleich, D. Bruder, A. Franzke, G. Rogler,
S. Suerbaum, J. Buer, F. Gunzer, A.M. Westendorf, Probiotic Escherichia coli
Nissle 1917 Inhibits Leaky Gut by Enhancing Mucosal Integrity, PLoS ONE. 2
(2007) e1308.
[7] K.B. Ahn, A.R. Kim, K.-Y. Kum, C.-H. Yun, S.H.
Han, The synthetic human betadefensin-3 C15 peptide exhibits antimicrobial
activity against Streptococcus mutans, both alone and in combination with
dental disinfectants, J Microbiol. 55 (2017) 830–836.
[8] J.W. Kim, Risk Factors for Delayed Recurrence
of Clostridium difficile Infection, Intest Res. 12 (2014) 266.
[9] F. Algieri, J. Garrido-Mesa, T. Vezza, M.J.
Rodríguez-Sojo, M.E. RodríguezCabezas, M. Olivares, F. García, J. Gálvez, R.
Morón, A. Rodríguez-Nogales, Intestinal anti-inflammatory effects of probiotics
in DNBS-colitis via modulation of gut microbiota and microRNAs, Eur J Nutr. 60
(2021) 2537–2551.
[10] A. Behrouzi, H. Mazaheri, S. Falsafi, Z.H.
Tavassol, A. Moshiri, S.D. Siadat, Intestinal effect of the probiotic
Escherichia coli strain Nissle 1917 and its OMV, J. Diabetes Metab. Disord. 19
(2020) 597–604.
[11] S. Sha, B. Xu, X. Kong, N. Wei, J. Liu, K. Wu,
Preventive effects of Escherichia coli strain Nissle 1917 with different
courses and different doses on intestinal inflammation in murine model of
colitis, Inflamm. Res. 63 (2014) 873–883.
[12] S. Guo, S. Chen, J. Ma, Y. Ma, J. Zhu, Y. Ma,
Y. Liu, P. Wang, Y. Pan, Escherichia coli Nissle 1917 Protects Intestinal
Barrier Function by Inhibiting NF- κ B-Mediated Activation of the MLCK-P-MLC
Signaling Pathway, Mediators of Inflammation. 2019 (2019) 1–13.
[13] H. Xu, Q. Hou, J. Zhu, M. Feng, P. Wang, Y.
Pan, The protective effect of Escherichia coli Nissle 1917 on the intestinal
barrier is mediated by inhibition of RhoA/ROCK2/MLC signaling via TLR-4, Life
Sciences. 292 (2022) 120330.
[14] R. Li, L. Helbig, J. Fu, X. Bian, J. Herrmann,
M. Baumann, A.F. Stewart, R. Müller, A. Li, D. Zips, Y. Zhang, Expressing
cytotoxic compounds in Escherichia coli Nissle 1917 for tumor-targeting
therapy, Research in Microbiology. 170 (2019) 74–79.
[15] H. Wang, S.E.P. Bastian, A. Lawrence, G.S.
Howarth, Factors derived from Escherichia coli Nissle 1917, grown in different
growth media, enhance cell death in a model of 5-fluorouracil-ind
|